BROWSE ALPHABETICALLY LEVEL:    Elementary    Advanced    Both INCLUDE TOPICS:    Basic Math    Algebra    Analysis    Biography    Calculus    Comp Sci    Discrete    Economics    Foundations    Geometry    Graph Thry    History    Number Thry    Phys Sci    Statistics    Topology    Trigonometry compact – definite integral compact   Topology: In a topological space, a set E is compact if every open covering of E has a finite subcover, i.e., a finite subcollection which also covers E. A space X is compact if and only if every collection of closed sets with the finite intersection property has a non-empty intersection. E is called s-compact if there exists a sequence of compact sets {Ci} such that E is contained in their union.Cf. locally compact, Bolzano-Weierstrass property, Heine-Borel property.Set Theory: A cardinal k is called weakly compact if it is uncountable and Equivalently, k is weakly compact if it is strongly inaccessible and there are no k-Aronszajn trees.Lattices: an element a of a lattice L is called compact if whenever a is dominated by the join of a subset X of L then a is dominated by the join of a finite subset of X. Symbolically: comparison test    ARTICLE   A test for the convergence of a series. See the article for a complete description. complete   Analysis: A metric space X is complete if every Cauchy sequence in X converges in X.Logic: a system of axioms for a mathematical theory is complete if every theorem in the theory is deducible from the axioms. Gödel's incompleteness theorem states that any axiom system which includes or allows the operations of arithmetic is necessarily incomplete.Set Theory: If F is a filter on a set X and k is a regular, uncountable cardinal, then we say that F is k-complete (k-closed) if AF for every AF with |A| < k. Every filter is w-complete. If k is the first uncountable cardinal (1), then F is called countably complete. Related article: Gödel's Theorems complete measure   See measure. concave   A region of space is concave if there are two points of the region such that a line joining the two points is not entirely contained within the region. In particular, a polygon is concave if any of its interior angles is greater than 180°.Cf. convex. concave function   A function is concave if the chord connecting any two points of its graph lies entirely below the graph.Cf. convex function. cone    ARTICLE   The infinite surface of revolution generated as shownThe term also refers to the solid bounded by one of the nappes and a flat elliptical base. If in this case the base is circular (at right angles to the axis), the cone is called a right circular cone. The surface area S (excluding the base) and volume V of a right circular cone are given byCf. conic section. conic section    ARTICLE   A plane curve, either the ellipse, parabola, or hyperbola, which results from the intersection of a plane with a cone. See the article for a full expositionCf. Dandelin's Spheres. connected   A topological space X is connected if there are no two open sets of X whose union is X and whose intersection is empty. constant function   A constant function f is one whose value is the same at all points of its domain. continuous   Analysis: A function f is continuous at a point x of its domain if, whenever we are given a number e greater than 0, we may find a d greater than 0 so that whenever y is within a d-neighborhood of x, then f(y) is within an e-neighborhood of f(x).Topology: A transformation of one topological space into another is continuous if the inverse image of every open set is open, or equivalently if the inverse image of every closed set is closed.Cf. uniformly continuous, equicontinuous, absolutely continuous. convergent sequence   See sequence. convergent series   See series. Related article: Series convex   Naively, a region of space is convex if the line segement joining any two points of the region lies wholly within it. Thus, a polygon is convex if every line segment joining any two points on its sides lies entirely within the polygon. (This is equivalent to the condition that all its interior angles be less than 180°.)More generally, a region in a real vector space is convex if whenever two points x and y are in the region then so is any point tx + (1 - t)y, where t lies in the interval [0, 1]. See the immediately following entries for additional uses of the descriptor “convex.”Cf. concave. convex function   A function is convex if the chord joining any two points of its graph lies entirely above the graph.Cf. concave function. countable   A set is countable if it is finite, or if it is infinite and bijective to the set of natural numbers (finite ordinals), i.e., if there exists a complete one-to-one mapping of the set in question onto the set N. Sets that are both countable and infinite are sometimes called denumerable. Georg Cantor proved that sets may be uncountably infinite, for example the set of real numbers. Related MiniText: Infinity -- You Can't Get There From Here... countably infinite   See countable cover   Topology: a collection of sets which contains a given set. If the sets in the covering collection are open sets, the cover is called an open cover.Partially ordered sets: If x and y are elements of a partially ordered set such that x y, and such that there is no z such that x z y, then we say that x covers y.Graph Theory: An edge or vertex of a graph is said to cover (verb) those vertices or edges, respectively, that it is incident on. A set of edges or vertices is said to cover any vertex or edge covered by any element of that set. A set of edges or vertices that covers all the vertices or edges, respectively, of the graph is called a cover (noun), usually with a specification of whether it consists of edges or vertices. See edge cover, vertex cover. cross product   See vector product. Dandelin’s Spheres    ARTICLE   A proof by the 17th century French mathematician Germinal Dandelin of the equivalence of the plane-geometry and conic-section definitions of the ellipse, parabola, and hyperbola. See the article for a full exposition. definite integral   See: integral. compact – definite integral
 HOME | ABOUT | CONTACT | AD INFO | PRIVACYCopyright © 1997-2013, Math Academy Online™ / Platonic Realms™. Except where otherwise prohibited, material on this site may be printed for personal classroom use without permission by students and instructors for non-profit, educational purposes only. All other reproduction in whole or in part, including electronic reproduction or redistribution, for any purpose, except by express written agreement is strictly prohibited. Please send comments, corrections, and enquiries using our contact page.